Practical Manual

Statistical Methods & Experimental Design

FBS 148 3(2+1)

Dr. Shailendra Kumar Dr. Tanuj Misra

College of Horticulture and Forestry
Rani Lakshmi Bai Central Agricultural University,
Jhansi-284003

Syllabus FBS 148 3(2+1): Formation of frequency distribution, Diagrammatic and graphic representation. Calculation of different measures of central tendency. Computation of various measures of dispersion. Calculation of coefficient of variation – coefficients of Skewness and kurtosis. Computation of product moment correlation coefficient – rank correlation coefficient – and coefficient of concordance. Fitting of linear regression models for prediction. Simple problems on probability – fitting of binomial distribution. Fitting of Poisson distribution, problems on normal distribution. Selection of simple random sample – estimation of parameters – sample size determination. Selection of stratified random sample – equal, proportional and Neyman's allocation in stratified sampling. Large sample tests. Small sample tests, t and F tests, Chi –square test, test of goodness of fit – test of independence of attributes in a contingency table – computation of mean – square contingency. Analysis of variance – construction of ANOVA table of one-way classified data. Analysis of variance – construction of ANOVA table of two-way classified data. Layout and analysis of CRD, Layout and analysis of RBD. Analysis of data from 2ⁿ factorial experiments in RBD. Formation of Yate's table – calculation of main effects and interaction effects. Layout and analysis of split-plot design.

Name of Students	
Roll No	Batch
Session	Semester
Course Name:	
Course No	
Credit	
No. of Copies:	
Price: Rs.	
@ RLBCAU, Jhansi	
CER	TIFICATE
This is to certified that Shri./Km	ID. No
has completed the practical of course	Course No
as per the syllabus of B.Sc. (Hons.) Agriculture	semester in the yearin the
respective lab of College.	

Course Teacher

Date:

CONTENTS

S. N.	Practical Name	Page No.
1	To construct frequency table and draw Histogram, Polygon, Frequency Curve, Ogive, bar diagram and pie chart	
2	To Calculate different measures of central tendency	
3	To calculate measure of dispersion and coefficient of dispersion	
4	To calculate first four central moments, coefficient of Skewness (β_1) and Kurtosis (β_2) . Comment on nature of the data.	
5	To calculate correlation co-efficient between two variables	
6	To fit linear regression equation on the given data	
7	To solve some basic problems of probability, Additive and Multiplicative laws of Probability	
8	To fit Binominal and Poisson distributions of the given data.	
9	To Solve Normal distributions problem	
10	To draw a simple random sample and estimate population mean and population variance	
11	To draw samples in stratified random sampling under (equal, proportional and Neyman allocation) along with determination of their variances and standard errors.	
12	To test significant difference between means & proportions in case of single sample and two samples using z-test (large sample test).	
13	To test significant difference between sample mean and population, two sample means for independent samples and paired samples using t-test	
14	To test goodness of fit of the distribution and association between attributes using chi Square test	
15	To construct Completely Randomized Design (CRD) and analyze the data	
16	To construct the layout of RBD and analyse the data	
17	To construct layout of Latin Square Design (LSD) and analyse the data	
18	To construct the Split Plot Design and analyse the data	

Objective: To construct frequency table and draw Histogram, Polygon, Frequency Curve, Ogive, bar diagram and pie chart.

Problem: The height of 45 sugarcane plants are following 85, 86, 89, 76, 76, 75, 111, 123, 56, 68, 67, 69, 91, 93, 99, 122, 112, 144, 123, 142, 151, 165, 88, 86, 92, 89, 90, 190, 145, 167, 173, 113, 118, 115, 119, 123, 126, 127, 88, 78, 93, 88, 98, 78, 67. Construct a frequency table and draw histogram, polygon, frequency curve, and ogive of the given data.

p-II: numb	er of classes = appr	roximate value of k = 1+3.322 log	₁₀ N =
n-III [.] Divid	le the by number of	classes and get width of class int	terval =range
p III. Divio	ic the by hamber of	olasses and get width or class in	number of classes
p-IV: Con	struct a table		
	Class Interval	Tally Marks	Frequency
	•••••		

Problem: The	cropping pattern in U.P. in the yea	r 2012-13 was as follows. Draw simpl	e bar diagram for
	data is given below.		o som unagrammer
..			_
	Crops	Area In 1,000 hectares	
	Cereals	6950	
	Oilseeds	3165	
	Pulses	1660	
	Others	2250	
			-
			•••••

.....

Problem: Draw a multiple bar diagram for the following data which represented agricultural production for the period from 2015-2019

Year	Food grains (tones)	Vegetable(tones)	others (tones)
2015	120	45	15
2016	125	50	25
2017	135	60	30
2018	140	65	35
2019	160	70	40

2019	160	70	40
_	4 1 11		
a Componei	nt bar diagram	for the following data	:
Year 2015	Sales (Rs.)	Gross Profit (Rs.) 40	Net Profit (Rs.)
Year	Sales (Rs.)	Gross Profit (Rs.)	Net Profit (Rs.)
Year 2015	Sales (Rs.) 110	Gross Profit (Rs.)	Net Profit (Rs.) 20 25 30
Year 2015 2016 2017 2018	Sales (Rs.) 110 125 130 145	40 55 60 65	20 25 30 35
Year 2015 2016 2017	Sales (Rs.) 110 125 130	Gross Profit (Rs.) 40 55 60	Net Profit (Rs.) 20 25 30
Year 2015 2016 2017 2018	Sales (Rs.) 110 125 130 145	40 55 60 65	20 25 30 35
Year 2015 2016 2017 2018	Sales (Rs.) 110 125 130 145	40 55 60 65	20 25 30 35
Year 2015 2016 2017 2018	Sales (Rs.) 110 125 130 145	40 55 60 65	20 25 30 35
Year 2015 2016 2017 2018	Sales (Rs.) 110 125 130 145	40 55 60 65	20 25 30 35
Year 2015 2016 2017 2018	Sales (Rs.) 110 125 130 145	40 55 60 65	20 25 30 35
Year 2015 2016 2017 2018	Sales (Rs.) 110 125 130 145	40 55 60 65	20 25 30 35
Year 2015 2016 2017 2018 2019	Sales (Rs.) 110 125 130 145 160	40 55 60 65 70	20 25 30 35 40
Year 2015 2016 2017 2018 2019	Sales (Rs.) 110 125 130 145 160	40 55 60 65	20 25 30 35 40
Year 2015 2016 2017 2018 2019	Sales (Rs.) 110 125 130 145 160	40 55 60 65 70	20 25 30 35 40
Year 2015 2016 2017 2018 2019	Sales (Rs.) 110 125 130 145 160	40 55 60 65 70	20 25 30 35 40

Problem: Draw a Component bar diagram and Percentage bar diagram for the following data:

Year	Sales (Rs.)	Gross Profit (Rs.)	Net Profit (Rs.)
2015	110	40	20
2016	125	55	25
2017	130	60	30
2018	145	65	35
2019	160	70	40

Percentage = ${Tota}$	Actual value l of the actual value	× 100

Problem: Given the cultivable land area in five Bundelkhand region districts of UP. Construct a pie diagram for the following data.

Districts	Cultivable area (in hectares)
Jhansi	425
Lalitpur	300
Banda	350
Hamirpur	250
Jalaun	500

Angle = $\frac{Actual\ value}{Total\ of\ the\ actual\ val}$	

Objective: To Calculate different measures of central tendency

Problem: The following data is related to crop yield in quintals of last 7 years of a farmer. Calculate the arithmetic mean of crop yield per plot in kg?

45, 54, 56, 42, 52, 39, 52, 48, 61, 55, 64

Solution: Step –I: count number of observations, n =
Step-II: to calculate the total of all of observation = $\sum_{i=1}^{n} x_i$ =
Step-III: Finally, we calculate the arithmetic mean of the following formula,
$\overline{\chi} = \frac{\sum_{i=1}^{n} x_i}{n} = \dots$

Problem: The following data is related to marks of 50 students of midterm exam. To find the Arithmetic Mean of the given data.

. `	o givon data.									
	Income in Lakh (x_i) :	16	18	20	22	24	26	28	30	
	No. of farmer (f _i):	4	6	10	10	9	8	2	1	

Solution: Step-I to construct the

following table:

Variable (x_i)	frequency(f _i)	$f_i \times x_i$
Total	$\sum_{i=1}^{n} f_i =$	$\sum_{i=1}^{n} f_i x_i =$

Step-II: To calculate the arithmetic mean, $\overline{x} = \frac{\sum_{i=1}^{n} f_i x_i}{N} =$

Problem: The following data is related to milk production in liter of 220 farmers of a village. Calculate average milk production of the given village?

Milk in liter(x _i)	0 - 4	4 - 8	8 - 12	12-16	16 - 20
No. of farmer (f _i):	20	90	60	40	10

Solution: Step-I: to construct the following table:

Class Interval	frequency(f _i)	Mid Value of Class Interval	$\mathbf{f_i} \times \mathbf{m_i}$
(X _i _ X _{i+1})		$m_{i} = \frac{x_i + x_{i+1}}{2}$	

Total	$N=\sum_{i=1}^{n} f_i =$	$\sum_{i=1}^{n} f_i m_i$ =

Step-II: To calculate the arithmetic of the following formula, $\overline{x} = \frac{\sum_{i=1}^{n} f_i x_i}{N} = \dots$

Median

Problem: The following data is related to plant height in cm. To find the median height of the plants? 9, 11, 12, 14, 18, 15, 21, 22, 24, 25, 3, 5

Solution:

Step-I: arrange the data in ascending order.....

Step –II: count number of observations, n =.....

Step –III: Since n is odd number so we find median by the following formula:

 $Median = \left(\frac{n+1}{2}\right)^{th} item = ...$

Problem: The following data is related to marks of 14 students getting from 30 marks Mid-term examination. To find the median marks of the students? 28, 19, 20, 22, 12, 14, 18, 15, 21, 22, 24, 25, 20, 28

Solution: Step-I: arrange the data in ascending.....

Step –II: count number of observations, n =.....

Step –III: Since n is even number so we find median by the following formula:

$$\mathsf{Median} = \frac{(\frac{n}{2})^{th} \ item + (\frac{n}{2} + 1)^{th} \ item}{2} = \dots$$

.....

Problem: The following data is related to yearly income of 60 farmers of a village which are selected randomly. To find the median income of farmers of the given village?

٠.				<u>J</u> .				
	Income in Lakh (x_i) :	2	3	4	5	6	7	8
	No. of farmer (f _i):	1	3	16	12	18	7	3

Solution: Step-I: To construct the following table

Variable (x_i)	frequency(f _i)	cumulative frequency
Total	$N = \sum_{i=1}^{n} f_i =$	

Step-II: To calculate $\frac{N}{2}$ =
2
Step-III: To see the value just greater than $rac{N}{2}$ in cumulative frequency column =
Step-IV: In first column, see the value of x correspond to the value getting in step-III,
M = 4'

Problem: The following data is related to height of tree in feet of 250 trees of a forest. To calculate median height of tree of the given forest?

Height of tree (x_i) 35-40 40-45 45-50 50-55 55-60 No. of tree (f_i): 30 70 90 40 20

Solution: Step-I to construct the following table:

Class Interval	Frequency (f_i)	cumulative frequency
Total	$N=\sum_{i=1}^{n} f_i =$	

Step-II: To calculate $\frac{1}{2}$ =
Step-III: To see the value just greater than $\frac{N}{2}$ in cumulative frequency column =
Step-IV: corresponding class of step-III is called middle class
Step-V: Median, $M_d = L + [h(\frac{\frac{N}{2}-C}{f})]$ Where L is lower limit of middle class, h is magnitude value of class
interval, f is frequency of middle class and C is cumulative frequency of preceding middle class.
Median, M _d =

Mode

Problem: Suppose that 18 student's shoes size number are following:

6, 7, 8, 7, 6, 7, 10, 7, 8, 9, 9, 7, 7, 7, 8, 7, 7, 7

Find average (mode) s	ize of sho	es?							
Solution: Mod	e =									
Problem: Follo	owing ta	ble gives	the cate	gory of 250) trees in a	a forest.				
Tree's Name	Α		В		С		D		Е	
No. of trees	12		150		50		20		18	
Find the meas	ure of ce	entral tend	lency (m	node) categ	ory of tree	es.				
Solution: Mod	followin	g data is	related	to milk pro	duction in	liter of 2	225 farm	ners of a	_	
Milk in liter(x _i)	Cleu ran	0 - 4	4 - 8	ite average 8 - 12		111K produ		10-24	24-28	
No. of farmer (f:\·	30	90	60	12-10	8	4		1	<u>'</u>
Step-II: Mode model class, magnitude vali Mode =	f ₂ is freue of cla	equency c ss interva	of succe	eeding mod	del class,	L is low	ver limit	of mode	el class	and h is
Geometric Me Problem: The		g data are	e related	I to dog por	oulation in	a city ev	ery fifth	year.		
	No. of fi		First	Second	Third	Fourth			Six	
_	Popul		4	7	15	28	50		32	
Find the geom					10		1 00	<u> </u>	-	
Solution: Step)-l									

log x_i

 \mathbf{X}_{i}

				∇^n 1.	0 a x =			
		0.4	$\sum_{i=1}^{n}$	$\frac{\sum_{i=1}^{n} le}{\log x_{i}}$	ogx _i -			
-II: Geoi	metric me	ean, G= Ar	ntilog [$\left[\frac{n}{n}\right] = \dots$				
J F:	41 0							
oiem: Fi	na the G	eometric m	lean of the	given data	3:			
	Xi	2	4	8		16	32	64
	fi	4	5	7		6	3	2
tion: St	tep-I:							
	Xi		f _i		log x _i		f _i log >	(i
			-1				1,1091	-1
_								
		$N=\sum_{i=1}^{n} f_i$	 =			\sum_{i}	$\int_{a=1}^{a} f_i \log x_i$.=
-II: └		$L^{-} \Delta i = 1 J \iota$				Δi	$=1$ $\int i^{10}g^{\lambda_1}$	<u>, </u>
		Σ1	1 6 1					
netric m	nean, G=	Antilog $\left[\frac{\sum_{i}}{2}\right]$	$\left[\frac{1}{N}\int_{N}^{L} i \log x_{i} \right]$	=				
			.,					
Jan "	A Al			where I C				
iem: ⊦ı	na the G	eometric m		given data	3 :			
	Xi	0 - 4	4 – 8	8 - 12	12-16	16 - 20	20-24	24-28
	fi	3	5	12	15	11	8	2
ıtion:	<u>'</u>	1	L	1	1	1	1	J

Solution: Step-I: To construct table:

Class Interval	frequency (f _i)	Mid-Value	log m _i	f _i log m _i
$(x_i - x_{i+1})$		$m_i = \frac{x_i + x_{i+1}}{2}$		

	$N = \sum_{i=1}^{n} f_i =$		$\sum_{i=1}^{n} f_i log m_i$ =
Step-II: Geometric me	ean, G= Antilog [$rac{\sum_{i=1}^{n} j}{2}$	$\left[\frac{f_i log m_i}{N}\right] = \dots$	
Harmonic Mean:			
	onic moon of the give	n data	
Problem: Find Harmo			
	1/3, 1/4, 1	1/5, 1/6, 1/7, 1/8, 1/9	
Solution: Step-I:			
	Xi	1	
		$\overline{x_i}$	
		$\sum_{i=1}^{n} \frac{1}{x_i} =$	
Cton II: Harmonia ma	on U = n =	$-\iota^{-1}x_i$	
Step-II: Harmonic mea	$\text{all, } \Pi = \frac{1}{\sum_{i=1}^{n} \frac{1}{x_i}} - \dots$		

Problem: A person went from City-A to City-B by different transport mode which speed and cover distance are given below:

transport mode	by foot	Taxi	train	Airplane	taxi
Speeds in km/h(x _i)	5	30	60	700	40
distances in km (f _i)	2	15	430	1100	50

Find the average speed (Harmonic Mean) of the complete journey.

Solution: Step-I:

Xi	fi	$\frac{1}{x_i}$	$\frac{f_i}{x_i}$
			•
	$N = \sum_{i=1}^{n} f_i =$		$\sum_{i=1}^{n} \frac{f_i}{x_i} =$

IV	Step-II: Harmonic mean, H = $\frac{\Sigma}{1}$	$\frac{\sum_{i=1}^{n} \frac{f_i}{x_i}}{N} = \dots$
----	--	--

Problem: Find the Harmonic mean of the given data:

	Xi	10-20	20-30	30-40	40-50	50-60	60-70	70-80
ĺ	fi	3	3	4	8	11	4	5

Solution:

Step-I:

Class Interval (x _i - x _{i+1})	frequency (f _i)	Mid-Value $m_i = \frac{x_i + x_{i+1}}{2}$	$\frac{1}{m_i}$	$\frac{f_i}{m_i}$
	$N=\sum_{i=1}^{n} f_i =$			$\sum_{i=1}^{n} \frac{f_i}{x_i} =$

Step-II: Harmonic mean, H = $\frac{\sum_{i=1}^{n} \frac{f_i}{m_i}}{N}$ =	

Obje	ective:	То	calculate	measure	of	dis	persion	and	coefficien	t of	dis	persio	n.
------	---------	----	-----------	---------	----	-----	---------	-----	------------	------	-----	--------	----

Range:

Problem: Find the range and its coefficient of the given data set:

Solution:

Range, R = L – S =.....

Coefficient of Range = $\frac{L-S}{L+S}$ =...

Problem: Find the range and its coefficient of the given data set:

Χ	10	15	20	25	30	35	40	45	50
f	4	8	12	10	21	17	19	7	3

Solution:

Range, R = L - S =....

Coefficient of Range = $\frac{L-S}{L+S}$ =....

Problem: Find the range and its coefficient of the given data set:

Х	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50
f	2	5	6	9	13	14	6	4	2

Solution:

Range, R = L – S =....

Coefficient of Range = $\frac{L-S}{L+S}$ =....

Problem: Find the Quartile Deviation of the given data:

4, 8, 12, 11, 34, 22, 5, 10, 35, 28, 30, 35, 26, 27

Also find coefficient of quartile deviation.

Solution: Step-I: Arrange the data in ascending order.....

Step-II: Calculate the value of $\frac{n+1}{4}$ =....

Step-III: Lower Quartile $(Q_1) = (\frac{n+1}{4})$ th item =.....

Step-IV: To calculate the value of $\frac{3(n+1)}{4}$ =.....

Step-V: Upper Quartile (Q₃) = $(\frac{3(n+1)}{4})^{th}$ item =....

Now, Quartile Deviation, Q = $\frac{Q_3 - Q_1}{2}$ =....

Coefficient of Quartile Deviation = $\frac{Q_3 - Q_1}{Q_3 + Q_1}$ =....

Problem: The following data is related to yearly income of 70 farmers of a village which are selected randomly. Measure the deviation in farmer's incomes using quartile deviation.

Income in Lakh (x_i) :	2	3	4	5	6	7	8	9	10	11
No. of farmer (f _i):	1	3	6	12	18	11	7	6	4	2

Solution: Step-I Construct the following table:

Variable (x_i)	Frequency (f _i)	cumulative frequency
Total	$N = \sum_{i=1}^{n} f_i =$	

Step-II: To calculate $\frac{N}{4}$	=
-------------------------------------	---

Step-III: To see the value just greater than $\frac{N}{4}$ in cumulative frequency column.....

Step-IV: In first column, see the value of x correspond to getting value in step-III that value is called Q₁.

Step-V: To calculate $\frac{3N}{4}$ =

Step-VI: To see the value just greater than $\frac{3N}{4}$ in cumulative frequency column......

Step-VII: In first column, see the value of x correspond to getting value in step-VI that value is called Upper Quartile (Q₃)......

Now, Quartile Deviation (Q.D) = $\frac{Q_3 - Q_1}{2}$ =....

Problem: Find the Quartile Deviation of the following frequency distribution:

Х	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50
f	2	5	6	9	13	14	6	4	2

Solution: Step-I: To construct the following table:

Class Interval	frequency(fi)	cumulative frequency
Total	$N=\sum_{i=1}^{n} f_i =$	

Mean Deviation:

Problem: The height of 10 mango trees are given below. Find the mean deviation about mean.

22.0, 22.5, 22.9, 23.0, 23.2, 23.1, 23.4, 23.0, 24.1, 23.6 in meter.

Solution: Step-I: To calculate Average A = Mean = $\frac{\sum_{i=1}^{n} x_i}{n}$ =.....

Step-II: Construct a table:

Xi	$ x_i-A $
$\sum_{i=1}^{n} xi =$	$\sum_{i=1}^{n} xi - A =$

Step-III: Mean Deviation, $\eta = \frac{\sum_{i=1}^{n} |x_i - A|}{n} = \dots$

Coefficient of Mean Deviation = $\frac{\eta}{A}$ =....

Problem: The following data is related to yield of wheat of 60 plots in quintal. To find the mean deviation about median and coefficient of mean deviation in yield.

yield	8	9	10	11	12	13	14	15
frequency	2	5	6	20	10	10	5	2

Solution: Step-I: To calculate Average A, Median

Step-I(a): To construct the following table

Variable (x_i)	Frequency (f _i)	cumulative
		frequency
Total	$N=\sum_{i=1}^{n} f_i =$	

Step-I(b): To calculate $\frac{N}{2}$ =.....

Step-I(c): To see the value just greater than $\frac{N}{2}$ in cumulative frequency column =.....

Step-I(d): In first column, see the value of x correspond to the value getting in step-III,

Median =.....

Step-II: Construct table

Frequency (f _i)	$ x_i - A $	$f_i x_i - A $

$N = \sum_{i=1}^{n} f_i =$	$\sum_{i=1}^{n} f_i x_i - A =$

Step-III: Mean Deviation, $\eta = \frac{\sum_{i=1}^{n} f_i |x_i - A|}{N} = \dots$

Problem: The following data is related to height of 200 plants in cm. To calculate mean deviation about mode in height of the plants.

Height of tree (x _i)	30-32	32-34	34-36	36-38	38-40
No. of tree (f _i):	3	70	90	35	2

Solution: Step-I: To calculate Average A (Mode)

Mode = L +
$$\left[\frac{h(f_1-f_0)}{2f_1-f_0-f_2}\right]$$
 =....

Step-II: Construct table

Class Interval	frequency(fi)	Mid value (m_i)	$ m_i - A $	$ f_i m_i-A $
	$N = \sum_{i=1}^{n} f_i =$			$\sum_{i=1}^{n} f_i m_i - A =$

Step-III: Mean Deviation, $\eta = \frac{\sum_{i=1}^{n} f_i |m_i - A|}{N} = \dots$

Problem: The yield of wheat of 10 plots are given below. Find the standard deviation and Coefficient of Variance (CV) in yield data.

22.0, 22.5, 22.9, 23.0, 23.2, 23.1, 23.4, 23.0, 24.1, 23.6 in quintal.

Solution:

Step-I: To calculate Arithmetic Mean, $\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \dots$

Step-II: Construct a table:

Xi	$x_i - \overline{x}$	$(xi - \overline{x})^2$
$\sum_{i=1}^{n} x_i =$		$\sum_{i=1}^{n} (xi - \overline{x})^2 =$

Step-III : Standard Deviation, $\sigma = \sqrt{\frac{\sum_{i=1}^{n}}{n}}$	$\frac{1(xi-\overline{x})^2}{n} = \frac{1}{n}$	

Step-IV: Coefficient of Variance (CV) =
$$\frac{\sigma}{x} \times 100$$
 =.....

Problem: The following data is related to income of farmer. Compute the standard deviation and CV of the data.

Income ('00000') Rs.	8	9	10	11	12	13	14	15
No. of Farmers		5	16	20	10	10	5	2

Solution: Step-I: To calculate Arithmetic Mean, $\overline{x} = \frac{\sum_{i=1}^{n} f_i x_i}{N}$

Step-II: Construct a table:

Xi	fi	f _i x _i	$x_i - \overline{x}$	$(xi - \overline{x})^2$	$f_i(xi - \overline{x})^2$
		$\sum_{i=1}^{n} f_i x_i =$			$\sum_{i=1}^n f_i(xi - \overline{x})^2 =$

Step-III : Standard Deviation, $\sigma = \sqrt{\sum_{i=1}^{n} j_i}$	$\frac{f_i(xi-\overline{x})^2}{N}$	

Step-IV: Coefficient of Variance (CV) = $\frac{\sigma}{\overline{x}} \times 100$ =.....

Problem: Find the standard deviation, coefficient of standard deviation, variance and CV of the given data.

Class Interval	10-20	20-30	30-40	40-50	50-60
frequency	8	15	45	20	12

Solution: Step-I: To calculate Arithmetic Mean, $\overline{x} = \frac{\sum_{i=1}^{n} f_i m_i}{N} = \dots$

Step-II: Construct a table:

Class Interval	fi	Mid-Value (m _i)	$f_i m_i$	$m_i - \overline{x}$	$(m_i-\overline{x})^2$	$f_i(m_i-\overline{x})^2$
			$\sum_{i=1}^{n} f_i m_i =$			$\sum_{i=1}^{n} f_i (m_i - \overline{x})^2 =$

Step-III : Standard Deviation, $\sigma = \sqrt{\frac{\sum_{i=1}^{n} f_i (m_i - \overline{x})^2}{N}} = \dots$
N
σ
Coefficient of Standard Deviation = $\frac{\sigma}{\overline{x}}$ =
Mariana a = (Otan dend Davietica)?
Variance = (Standard Deviation) ² = σ^2 =
Coefficient of Variance (CV) = $\frac{\sigma}{\pi} \times 100$

Objective: To calculate first four central moments, coefficient of Skewness (β_1) and Kurtosis (β_2). Comment on nature of the data.

Problem: Compute first four central moments and the Karl Pearson's coefficient of skewness (β_1) and Kurtosis (β_2) from the following data: 8, 10, 11, 15, 16, 18, 21, 25, 28, 32, 35, 39, 41 and 42

Solution:

X	$(x-\overline{x})$	$(x-\overline{x})^2$	$(x-\overline{x})^3$	$(x-\overline{x})^4$
$\sum x =$		$\sum (\mathbf{x} \cdot \overline{\mathbf{x}})^2 = \dots$	$\sum (x-\overline{x})^3 = \dots$	$\sum (x-\overline{x})^4 = \dots$

 $\sum x = \dots \qquad | \sum (x-x)^2 = \dots \qquad | \sum (x-x)^3 = \dots \qquad | \sum (x-x)^4 = \dots$ Arithmetic Mean, $\overline{x} = \frac{\sum x}{n} = \dots$

First central moment, $\mu_1 = \frac{\sum (\mathbf{x} - \overline{\mathbf{x}})}{n} = 0$

Second central moment, $\mu_2 = \frac{\sum (\mathbf{x} - \overline{\mathbf{x}})^2}{n} = \dots$

Third central moment, $\mu_3 = \frac{\sum (\mathbf{x} - \overline{\mathbf{x}})^3}{n} = \dots$

Fourth central moment, $\mu_4 = \frac{\sum (x - \overline{x})^4}{N} = \dots$

Coefficient of Skewness $\beta_1 = \frac{\mu_3^2}{\mu_2^3} = \dots$

Coefficient of Kurtosis $\beta_2 = \frac{\mu_4}{\mu_2^2} = \dots$

Problem: Compute first four central moments and the Karl Pearson's coefficient of skewness (β_1) and Kurtosis (β_2) from the following data:

Height of tree (x)	32	33	34	35	36	37	38	39	40
No of trees (f)	3	5	8	11	19	23	40	28	14

Solution:

X	f	f. x	$(x-\overline{x})$	f. (x- x)	f. $(x-\overline{x})^2$	f. $(x-\overline{x})^3$	f. $(x-\overline{x})^4$
Total	$N = \sum f$	$\sum f. x$		$\sum f. (x-\overline{x})=0$	$\sum f. (x-\overline{x})^2$	$\sum f. (x-\overline{x})^3$	$\sum f. (x-\overline{x})^4$
	=	= ···			=	=	=

Arithmetic Mean, $\bar{x} = \frac{\sum f.x}{N} = \dots$

First central moment, $\mu_1 = \frac{\sum \mathbf{f}.(\mathbf{x} - \overline{\mathbf{x}})}{N} = \mathbf{0}$

Second central moment, $\mu_2 = \frac{\sum f.(\mathbf{x} - \overline{\mathbf{x}})^2}{N} = \dots$

Third central moment, $\mu_3 = \frac{\sum f.(\mathbf{x} - \overline{\mathbf{x}})^3}{N} = \dots$

Fourth central moment, $\mu_4 = \frac{\sum \mathbf{f.(x-\overline{x})^4}}{N} = \dots$

Coefficient of Skewness $\beta_1 = \frac{\mu_3^2}{\mu_2^3} = \dots$

Coefficient of Kurtosis $\beta_2 = \frac{\mu_4}{\mu_2^2} = \dots$

Objective: To calculate correlation co-efficient between two variables.

Problem: Find the correlation coefficient between height and weight of yield of the plants. Data are given below:

Height in cm	6	7	8	9	10
weight in gm	20	23	24	26	26

Solution: Step-I: To construct table:

Х	У	X ²	y ²	ху
51 0	∇^n	n	n	n
$\sum_{i=1}^{n} x_i =$	$\sum_{i=1}^{n} y_i =$	$\sum_{i=1}^{n} x_i^2 =$	$\sum_{i=1}^{n} y_i^2 =$	$\sum_{i=1}^{n} x_i y_i =$

Step-II: (a) n= number of paired observations =

$$(b)\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \dots$$

(c)
$$\overline{y} = \frac{\sum_{i=1}^{n} y_i}{n} = \dots$$

(c)
$$\overline{y} = \frac{\sum_{i=1}^{n} y_i}{n} = \dots$$

Step-III: (a) $\sigma_x = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \overline{x}^2} = \dots$

(b)
$$\sigma_y = \sqrt{\frac{1}{n} \sum_{i=1}^n y_i^2 - \overline{y}^2} = \dots$$

(c)
$$Cov(x, y) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \overline{x} \times \overline{y} = \dots$$

Step-IV: Karl Pearson correlation coefficient,
$$r_{xy} = \frac{Cov(x,y)}{\sigma_x \sigma_y} = \dots$$

Problem: Find the rank correlation coefficient between height and biomass of the plants. Data are given below:

Rank in Height	1	2	3	4	5	6	7	8
Rank in biomass	1	2	3	5	6	4	7	8

Solution: Step-I: Count number of paired observations, n =.....

Step-II: To construct table

R _x	R _y	$d_i = R_y - R_x$	d_i^2

	$\sum_{i=1}^{n} d_i^2 =$

Step-III: Rank correlation coefficient, $ ho$	$= 1 - \frac{6 \sum_{i=1}^{n} d_i^2}{n(n^2 - 1)} = \dots$	

Problem: let's ask three people to rank order ten popular movies. 1 being the least favorite and 10 being the favorite of the list. Here's the data from evaluator's A, B, and C:

Α	В	С
1	7	6
5	6	4
6	2	8
7	5	5
10	9	10
4	3	1
8	1	3
3	10	9
9	4	7
2	8	2

Compute Kendall coefficient Test whether they tend to like the same movies or not?

Solution:

Objective: To fit linear regression equation on the given data.

Problem: Fit the regression equation of y (yield in kg) on x (number of root fibers) of turmeric crop from the following data.

No. of roots	8	7	5	10	11	9	12	14	13
Yield (in kg)	1.2	1.1	0.7	1.3	1.3	1.0	1.4	1.3	1.4

Solution: Step-I: To construct table:

Х	у	x ²	y ²	ху
57 2	5 22	n	n	n
$\sum_{i=1}^{n} x_i =$	$\sum_{i=1}^{n} y_i =$	$\sum_{i=1}^{n} x_i^2 =$	$\sum_{i=1}^{n} y_i^2 =$	$\sum_{i=1}^{n} x_i y_i =$

Step-II: (a) n= number of paired observations =.....

$$(b)\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \dots$$

(c)
$$\overline{y} = \frac{\sum_{i=1}^{n} y_i}{n} = \dots$$

(c) $\overline{y} = \frac{\sum_{i=1}^{n} y_i}{n} = \dots$ Step-III: (a) $\sigma_x = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \overline{x}^2} = \dots$

(b)
$$\sigma_{y} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} - \overline{y}^{2}} = \dots$$

(c) Cov (x, y) =
$$\frac{1}{n}\sum_{i=1}^{n}x_{i}y_{i} - \overline{x} \times \overline{y}$$
 =....

Step-IV: Karl Pearson correlation coefficient, $r_{xy} = \frac{Cov(x,y)}{\sigma_x \sigma_y} = \dots$

Step-V: regression coefficient, $b_{yx} = \frac{\sigma_y}{\sigma_x} \times r_{xy} = \dots$

Step-VI: regression equation, $y - \overline{y} = b_{yx} (x - \overline{x}) = \dots$

Objective: To solve some basic problems of probability, Additive and Multiplicative laws of Probability

Problem: Suppose a coin toss three times then what is the probability getting: (a) Three heads (b) one head and two tails Solution: **Problem:** Suppose a coin toss two times then what is the probability getting: (a) Both heads (b) one head and one tail

	Two dice are rolled simultaneously. What is the probability getting the (a) Sum of their point is 8 (b) Sum of their point is at least 10
Solution:	
•••••	
probability	A bag contains 3 red, 4 white and 1black balls. Three balls are drawn at random. What is the getting: (a) all white balls (b) one white and two red balls
Solution:	
Problem:	

Addition Law of Probability : If A and B are two events. The probability of occurring A or B (at least ne) is given by, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
roblem: A card is drawn at random from a pack of 52 cards. What is the probability getting: a) king (b) heart (c) king and heart (d) king or heart olution:
Problem: A card is drawn at random from a pack of 52 cards. What is the probability getting (a) Club o) Ace (c) Club and Ace (d) Club or Ace.
Solution:

.....

Multiplication Law of Probability: If A and B are two events then $P(A\cap B) = P(A). \ P(B A), P(A) > 0$ Where $P(B A)$ is a conditional probability of occurrence of B when A has already occurr. Bayes Theorem: If E_1, E_2, \ldots, E_n are mutually exclusive events, $P(E_i) \neq 0$ and A is any arbitrary event such that A is subset of $\bigcup_{i=1}^n E_i$ then conditional probability, $P(E_i A) = \frac{P(E_i)P(A E_i)}{\sum_{i=1}^n P(E_i)P(A E_i)}$
Problem: There are three urns, contains some balls following way:
Urn-I 3 red, 2 black and 3 white balls Urn-II 2 red, 4 black, 2 white Urn-III 2 red, 3 black, 3 white A urn is selected randomly and draw two balls getting one red and one white. What is the probability that balls come out to be Urn-II.
Solution:

.....

Problem: There are three urns, contains some balls following way:
Urn-I 4 red, 2 black and 2 white balls Urn-II 2 red, 2 black, 2 white Urn-III 2 red, 4 black, 2 white A urn is selected randomly and draw two balls getting one red and one white. What is the probability that balls come out to be Urn-II.
Solution:

Practical No. 8

Objective: To fit Binomi						ility andthi	ina 1 ha	242	
Problem: Suppose 6 coins to	ss simulta	aneous	sly. Wh	at is the	probab	ility getti	ing 4 ne	aus	
Solution:									
									•••••
Problem: The following data	relate to th	ne frec	quency	distribu	tion of n	umber c	of boys	in the fir	st six
children in families of U.P.							_		st six
children in families of U.P. No. of boys/family	0	1	2	3	4	5	6	Total	st six
children in families of U.P. No. of boys/family No. of families	0 5	1 58	2 200	3 368	4 365	5 255	6 70	Total 1321	st six
children in families of U.P. No. of boys/family No. of families Solution:	5	58	2 200	3 368	4 365	5 255	6 70	Total 1321]
children in families of U.P. No. of boys/family No. of families	5	58	2 200	3 368	4 365	5 255	6 70	Total 1321]
children in families of U.P. No. of boys/family No. of families Solution:	5	58	2 200	3 368	4 365	5 255	6 70	Total 1321]
children in families of U.P. No. of boys/family No. of families Solution:	5	58	2 200	3 368	4 365	5 255	6 70	Total 1321]
children in families of U.P. No. of boys/family No. of families Solution:	5	58	2 200	3 368	4 365	5 255	6 70	Total 1321]
children in families of U.P. No. of boys/family No. of families Solution:	5	58	2 200	3 368	4 365	5 255	6 70	Total 1321]
children in families of U.P. No. of boys/family No. of families Solution:	5	58	2 200	3 368	4 365	5 255	6 70	Total 1321]
children in families of U.P. No. of boys/family No. of families Solution:	5	58	2 200	3 368	4 365	5 255	6 70	Total 1321]
children in families of U.P. No. of boys/family No. of families Solution:	5	58	2 200	3 368	4 365	5 255	6 70	Total 1321]
children in families of U.P. No. of boys/family No. of families Solution:	5	58	2 200	3 368	4 365	5 255	6 70	Total 1321]
children in families of U.P. No. of boys/family No. of families Solution:	5	58	2 200	3 368	4 365	5 255	6 70	Total 1321]
children in families of U.P. No. of boys/family No. of families Solution:	5	58	2 200	3 368	4 365	5 255	6 70	Total 1321]
children in families of U.P. No. of boys/family No. of families Solution:	5	58	2 200	3 368	4 365	5 255	6 70	Total 1321]

	••
	••
	••
Dushlams. The mann and variance of Dinamial Distribution are C and 2/2 represtively. Find necessarias	-1
Problem: The mean and variance of Binomial Distribution are 6 and 3/2 respectively. Find parameter	ΟI
binomial distribution. Solution:	
Solution	•••
	••
	••
	••
	••
	••

Problem: Suppose there is a disease, whose average incidence is 2 per 100000 plants. What is the probability that a plot of 100000 plant has at most 3 the average incidence? Solution:									the						
Solution:															
			•••••										•••••		
														•••••	
Problem: The follow successiv	e inte		of on	e-eigh	th of a	minut	e. Fit F		n Dis		ion				
successiv No. of α- particles	e inte	ervals 1	of on	e-eigh 3	th of a	minut 5	e. Fit F 6	Poisso 7	n Dis 8	tribut 9	ion 10	11	12	13	14
successiv	e inte 0 55	ervals 1 200	of on 2 383	e-eigh 3 525	th of a 4 532	minut 5 408	e. Fit F	oisso	n Dis	tribut	ion				
successiv No. of α- particles Observed frequency	e inte 0 55	ervals 1 200	of on 2 383	e-eigh 3 525	th of a 4 532	minut 5 408	e. Fit F 6	Poisso 7	n Dis 8	tribut 9	ion 10	11	12	13	14
successiv No. of α- particles Observed frequency	e inte 0 55	ervals 1 200	of on 2 383	e-eigh 3 525	th of a 4 532	minut 5 408	e. Fit F 6	Poisso 7	n Dis 8	tribut 9	ion 10	11	12	13	14
successiv No. of α- particles Observed frequency	e inte 0 55	ervals 1 200	of on 2 383	e-eigh 3 525	th of a 4 532	minut 5 408	e. Fit F 6	Poisso 7	n Dis 8	tribut 9	ion 10	11	12	13	14
successiv No. of α- particles Observed frequency	e inte 0 55	ervals 1 200	of on 2 383	e-eigh 3 525	th of a 4 532	minut 5 408	e. Fit F 6	Poisso 7	n Dis 8	tribut 9	ion 10	11	12	13	14
successiv No. of α- particles Observed frequency	e inte 0 55	ervals 1 200	of on 2 383	e-eigh 3 525	th of a 4 532	minut 5 408	e. Fit F 6	Poisso 7	n Dis 8	tribut 9	ion 10	11	12	13	14
successiv No. of α- particles Observed frequency	e inte 0 55	ervals 1 200	of on 2 383	e-eigh 3 525	th of a 4 532	minut 5 408	e. Fit F 6	Poisso 7	n Dis 8	tribut 9	ion 10	11	12	13	14
successiv No. of α- particles Observed frequency	e inte 0 55	ervals 1 200	of on 2 383	e-eigh 3 525	th of a 4 532	minut 5 408	e. Fit F 6	Poisso 7	n Dis 8	tribut 9	ion 10	11	12	13	14
successiv No. of α- particles Observed frequency	e inte 0 55	ervals 1 200	of on 2 383	e-eigh 3 525	th of a 4 532	minut 5 408	e. Fit F 6	Poisso 7	n Dis 8	tribut 9	ion 10	11	12	13	14
successiv No. of α- particles Observed frequency	e inte 0 55	ervals 1 200	of on 2 383	e-eigh 3 525	th of a 4 532	minut 5 408	e. Fit F 6	Poisso 7	n Dis 8	tribut 9	ion 10	11	12	13	14
successiv No. of α- particles Observed frequency	e inte 0 55	ervals 1 200	of on 2 383	e-eigh 3 525	th of a 4 532	minut 5 408	e. Fit F 6	Poisso 7	n Dis 8	tribut 9	ion 10	11	12	13	14
successiv No. of α- particles Observed frequency	e inte 0 55	ervals 1 200	of on 2 383	e-eigh 3 525	th of a 4 532	minut 5 408	e. Fit F 6	Poisso 7	n Dis 8	tribut 9	ion 10	11	12	13	14
successiv No. of α- particles Observed frequency	e inte 0 55	ervals 1 200	of on 2 383	e-eigh 3 525	th of a 4 532	minut 5 408	e. Fit F 6	Poisso 7	n Dis 8	tribut 9	ion 10	11	12	13	14
successiv No. of α- particles Observed frequency	e inte 0 55	ervals 1 200	of on 2 383	e-eigh 3 525	th of a 4 532	minut 5 408	e. Fit F 6	Poisso 7	n Dis 8	tribut 9	ion 10	11	12	13	14
successiv No. of α- particles Observed frequency	e inte 0 55	ervals 1 200	of on 2 383	e-eigh 3 525	th of a 4 532	minut 5 408	e. Fit F 6	Poisso 7	n Dis 8	tribut 9	ion 10	11	12	13	14

Objective: To Solve Normal distributions problem.

Problem: X is a norr	nal variate with mea	n 25 and standard	deviation 5. Find the	ne probabilities that
(i) 20 ≤ <i>X</i> ≤	5 0 (ii) X≥ 30 (iii) <i>X</i> −3	30 >5		

Solut	ion:										
• • • • • • • • • • • • • • • • • • • •											
Prob	lem: The following	g data re	late to th	e freque	ency dist	ribution o	of 1000 j	oopulatio	on of their	intellige	ence
	score.			•	•		•	·			
	Class intervals	60-65	65-70	70-75	75-80	80-85	85-90	90-95	95-100	Total	
	Observed Freq.	2	22	150	335	326	135	25	5	1000	

Objective: To draw a simple random sample and estimate population mean and population variance.

Problem: Draw a sample of size n=3 using simple random sampling with –out replacement (SRSWOR) from a population unit 1, 2, 3, 4 and 5. Show the sample mean and sample mean square is an unbiased estimate of population mean and population mean square and to determine its variances and S.E.

Solution: Step-I: Construct the following table:

S. N.	Possible Samples	Sample mean $\overline{y_n}$	Sample Mean Square (s ²)	$(\overline{y_n} - \overline{y_N})$	$(\overline{y_n} - \overline{y_N})^2$
Total					

Step-II: calculate:

Number of all possible samples of size n from N = $\binom{N}{n}$ =
Sample Mean, $\overline{y_n} = \frac{\sum y_i}{n} = \dots$
Sample Mean Square, $s^2 = \frac{\sum (y_i - \overline{y_n})^2}{n-1} = \dots$
Population Mean, $\overline{y_N} = \frac{\sum y_i}{N} = \dots$
Population Mean Square, $S^2 = \frac{\sum (y_i - \overline{y_N})^2}{N-1} = \dots$
$E(\overline{y_n}) = \frac{\Sigma \overline{y_n}}{\binom{N}{n}} = \dots$
$E(s^2) = \frac{\sum s_i^2}{\binom{N}{n}} = \dots$
$\operatorname{Var}\left(\overline{y_{n}}\right) = \frac{N-n}{Nn}S^{2} = \dots$
Standard Error = $\sqrt{\operatorname{Var}(\overline{y_n})} = \frac{\sum (\overline{y_n} - \overline{y_N})^2}{\binom{N}{n}} = \dots$
Step-III: Now we have to check whether
$E(\overline{y_n}) = \overline{y_N} = \dots$

 $E(s^2) = S^2 = \dots$

Objective: To draw samples in stratified random sampling under (equal, proportional and Neyman allocation) along with determination of their variances and standard errors.

Problem: A hypothetical population of N= 5000 is divided into four strata, their sizes of population and standard deviations are given as follows: III

Ш

IV

Strata

Size Ni SD Si	500	600	1500	1300	1100
SD Si	3	4	8	6	9
Solution:					
		•••••			

Objective: To test significant difference between means & proportions in case of single sample and two samples using z-test (large sample test).

1. Z - test for Single Mean:

Problem: A sample of 500 trees which mean height is 13.6 meter. Test whether the sample comes from a forest which trees mean height is 14 meter and standard deviation is 2.4 meter.

Solution: It is used when we want to test significant difference between sample mean and population mean or testing a sample come from a specific population which mean is specific. Let x_1, x_2, \ldots, x_n be a sample of size n from a population which mean is μ and standard deviation σ is known where n is large number. This method has three steps:

- Step-I(a): Null Hypothesis H₀: Here we set up the null hypothesis that there is no significant difference between sample mean and population mean.
- (b): Alternative hypothesis H₁: we set up the alternative hypothesis that there is significant difference between sample mean and population mean.

Step-II: to calculate test statistic

z	=	$\frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$

Where $\overline{x} \to \text{sample mean}$, $\mu \to \text{Population Mean}$ and $\sigma \to \text{Population}$ standard deviation

Step-III: **Conclusion:** If calculated value of |z| is less than tabulated value of z_{α} at α % level of significance then null hypothesis is accepted otherwise rejected.

2. Z - test for difference Mean:

Problem: Suppose two varieties of Wheat A & B are sowing in 400 and 450 plots respectively. Their yield means are 35 and 42 respectively and standard deviation are 4 and 5 respectively. Test whether there is any significant difference between mean yields of A and B or not?

Solution: Step-I:(a) Null Hypothesis H₀: Here we set up the null hypothesis that there is no significant difference between two sample means.

(b) Alternative hypothesis H₁: we set up the alternative hypothesis that there is significant difference between two sample means.

Step-II: to calculate test statistic

Where $\overline{x} \to \text{mean of first sample}$, $\overline{y} \to \text{mean of second sample and } \sigma_1 \ and \ \sigma_2$ are standard deviation of first and second population respectively.

Step-III: Conclusion: If calculated value of |z| isthan tabulated value of z at 5 % level of significance then null hypothesis is.....

3. Z - test for single Proportion:

Problem: Forty plants were attacked by a disease and only 36 survived. Will you reject the hypothesis that the survival rate, if attacked by this disease, is 85%.

Solution: Step-I (a): Null Hypothesis H₀: Here we set up the null hypothesis that there is no significant difference between sample proportion and population proportion.

(b): Alternative hypothesis H₁: we set up the alternative hypothesis that there is significant difference between sample proportion and population proportion.

Step-II: to calculate test statistic

Where $p \rightarrow$ sample proportion, $P \rightarrow$ Population proportion and Q=1-P

Step-III: **Conclusion:** If calculated value of |z| is less than tabulated value of z_{α} at α % level of significance then null hypothesis is accepted otherwise rejected.

4. Z - test for difference of Proportion:

Problem: Random samples of 450 farmers from UP and 500 farmers from MP were asked whether they would like to have showing RR21 wheat in your field. 200 farmers from UP and 250 farmers from MP were in favor of the proposal. Test the hypothesis that proportions of farmers from UP and MP in favor of the proposal, are same or not.

Solution: Step-I: (a) Null Hypothesis H₀: Here we set up the null hypothesis that there is no significant difference between two sample proportion.

(b) Alternative hypothesis H₁: we set up the alternative hypothesis that there is significant difference between two sample proportions.

Step-II: to calculate test statistic

$$Z = \frac{p_1 - p_2}{\sqrt{PQ[\frac{1}{n_1} + \frac{1}{n_2}]}} = \dots$$

Where $p_1 \to \text{proportion}$ of first sample, $p_2 \to \text{proportion}$ of second sample. P \to Population Proportion and Q = 1- P

Step-III: Conclusion: If calculated value of |z| is less than tabulated value of t_{α} at α % level of significance then null hypothesis is accepted otherwise rejected.

Practical No. 13

Objective: To test significant difference between sample mean and population, two sample means for independent samples and paired samples using t-test

Problem: A sample of 10 trees which height are 10.5, 10.4, 10.8, 11.3, 12.5, 12.7, 11.5, 11.8, 12.1 and 11.5 meter. Test whether the sample comes from a forest which trees mean height is 11.

Solution: Step-I (a): Null Hypothesis H₀: Here we set up the null hypothesis that there is no significant difference between sample mean and population mean.

(b): **Alternative hypothesis H**₁: we set up the alternative hypothesis that there is significant difference between sample mean and population mean.

Step-II: to calculate test statistic t

x_i	$x_i - \overline{x}$	$(x_i - \overline{x})^2$
$\sum_{i=1}^{n_1} x_i =$		$\sum_{i=1}^{n_1} (x_i - \overline{x})^2 =$

Sample mean, $\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \dots$	
$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}} = \dots$	
$t = \frac{\overline{x} - \mu}{S/\sqrt{n}} = \dots$	
-,	tabulated value of t at α % level of

Step-III: Conclusion: Since calculated value of |t| is tabulated value of t at α % level of significance then null hypothesis is.....

Problem: A sample of 10 trees from forest A which height are 11.5, 11.4, 11.8, 12.3, 12.5, 13.3, 12.5, 12.8, 13.1 and 11.5 meter and second sample of 8 trees from forest B which height are 12.8, 12.3, 12.5, 13.8, 12.5, 12.8, 13.1 and 14.1 meter. Test whether forest A and B have same average height trees or not?

Solution: Step-I:(a) Null Hypothesis H₀: Here we set up the null hypothesis that there is no significant difference between two sample means.

(b) Alternative hypothesis H₁: we set up the alternative hypothesis that there is significant difference between two sample means.

Step-II: to calculate test statistic t

x_i	$x_i - \overline{x}$	$(x_i - \overline{x})^2$
$\sum_{n=1}^{\infty} x_n = 1$		$\sum_{n_1}^{n_1} (x - \overline{x})^2 -$
$\sum_{i=1}^{n_1} x_i =$		$\sum_{i=1}^{n_1} (x_i - \overline{x})^2 =$

Sample mean, \overline{x} =	$\frac{\sum_{i=1}^{n_1} x_i}{\sum_{i=1}^{n_1} x_i} =$		
,	n_1		

$y_i - \overline{y}$	$(y_i - \overline{y})^2$
	$y_i - \overline{y}$

	$\sum_{i=1}^{n_2} y_i =$	$\sum_{i=1}^{n_2} (y_i - \overline{y})^2$	
Sample mean, $\overline{y} = \frac{\sum_{i=1}^{n_2}}{n}$	¹ 1 y _i =		
$S = \sqrt{\frac{\sum_{i=1}^{n_1} (x_i - \overline{x})^2 + \sum_{i=1}^{n_1} (x_i - \overline{x})^2}{n_1 + n_2}}$	$\frac{n_{2}}{n_{2}} \frac{(y_i - \overline{y})^2}{2} = \dots$		
$t = \frac{\overline{x} - \overline{y}}{S\sqrt{\left[\frac{1}{n_1} + \frac{1}{n_2}\right]}} = \dots$			
significance	then	null	value of t at $lpha$ % level of hypothesis
is			

Problem: The following given yield data is related to before and after applying a soil treatment

Before treatment	7.9	8.5	7.3	9.7	10.3	10.2	11.1	8.9	8.5
After treatment	9.6	10.1	8.9	10.8	12.1	11.5	11.0	10.1	8.9

Test whether there is any significant effect of the soil treatment on the yield or not?

Solution: Step-I: (a) Null Hypothesis H₀: Here we set up the null hypothesis that there is no significant difference between two sample means.

(b) **Alternative hypothesis H**₁: we set up the alternative hypothesis that there is significant difference between two sample means.

Step-II: to calculate test statistic t

y_i	$d_i = y_i - x_i$	$d_i - \overline{d}$	$(d_i - \overline{d})^2$
	$\sum_{i=1}^{n} d_i =$		$\sum_{i=1}^{n} (d_i - \overline{d})^2 =$
			$\sum_{i=1}^n d_i$ =

Sample mean, $\overline{d} = \frac{\sum_{i=1}^{n} d_i}{n} = \dots$

$$S = \sqrt{\frac{\sum_{i=1}^{n} (d_i - \overline{d})^2}{n-1}} =$$

$$t = \frac{\overline{d}}{S/\sqrt{n}} = \dots$$

•	I: Conclusion: S cance then null I								
Obied	ctive: To tes	st aoodnes	s of fit	of the	distrib	utior	n and	_	Practical No. 14
•		ites using c							
roble	em: The no. of o	deaths due to	covid-19	over the da	ays of we	ek is	follow	ing:	
		Day's		Mon Tue		Fri	Sat	Sun	
	Test whether	No. of death death death due to d		11 13 s distribute	10	12 nly 0	9 ver the	15 days of v	week or not?
\						-		<u>-</u>	
oiutio	' ' '	Null Hypothesi: between obser				٠,			e is no significant
- \ \ \ \ \ \			•		•		•		
o) Alte	ernative hypothe between ob	esis H1: we se oserved freque	•		• •		at there	e is signifi	cant difference
N 11			inolog and	CAPCOICO	noquon	olos.			
tep-II	: Calculate test	statistic, χ^2							
	O_i	E_i	$O_i - E_i$	$(O_i -$	$-E_{i})^{2}$			$\frac{(O_i - E_i)}{E_i}$	$(S_i)^2$
								E_i	
						+			
								(O. F	.)2
						χ^2	$^2 = \sum$	$\lim_{i=1}^{n} \frac{(O_i - E_i)}{E_i}$	$\frac{(x)^2}{x^2}$ =
Step-II	l: Conclusion:	Since calculat	ted value	of χ^2 is	thar	ı tabı	ılated v	value of χ	² at 5 % level of
ignific	ance then null l	hypothesis is							
	The fellowin	na data io rolat	od to ove	colour fot	hor and	thair :	con		
)vahl-		ng data is relat	eu io eye	colour tat	ner and	uieir s	50[].		
Proble	em: The following								
Proble	em: The following			Father's ey				lack	Total

	Blue	70	30	100
eye				
Son's c	Black	20	80	100
တ် ပြ				
	Total	90	110	200

Test whether there is any association between father's eye colour and son's eye colour or not?

Solution:

Step-I:(a) Null Hypothesis H₀: Here we set up the null hypothesis that there is no association between two attributes.

(b) Alternative hypothesis H₁: we set up the alternative hypothesis that there is any association between two attributes.

Step-II: calculate expected frequencies:

		Attribute A		
		α	Α	Total
ute B	β	$(\alpha\beta)$	$(A\beta)$	(β)
Attribute	В	(αB)	(AB)	(B)
	Total	(α)	(A)	N

Expected frequencies,

$$\mathsf{E}(\alpha\beta) = \frac{(\beta)(\alpha)}{N} = \dots$$

$$\mathsf{E}(A\beta) = \frac{(\beta)(A)}{N} = \dots$$

$$\mathsf{E}(\alpha B) = \frac{(B)(\alpha)}{N} = \dots$$

$$\mathsf{E}(AB) = \frac{(B)(A)}{N} = \dots$$

Step-III: to calculate test statistic, χ^2

O_i	E_i	$O_i - E_i$	$(O_i - E_i)^2$	$\frac{(O_i - E_i)^2}{E_i}$
				$\chi^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i} =$

				ated value of χ^2 at 5 %	
				Practica	al No. 15
Objective:	: To construct C data.	ompletely Rai	ndomized Desig	ın (CRD) and ana	lyze the
Problem: Dr	raw the layout of CRE) for 4 treatments	A, B, C and D with r	replication 4, 4, 3 and 3	İ

Problem: The data relate to the five varieties of fertilizers using CRD conducted in a field with four plots per variety.

Varieties	Seed yield of sesame (gm/plot)					
V1	6	7	7	6		
V2	8	9	10	8		
V3	5	6	6			
V4	6	6	7			

Test whether the varieties are differed significantly or not?

Solution:

Varieties	Seed yi	eld of se	esame (g	Total	Mean	
V1	6	7	7	6		
V2	8	9	10	8		
V3	5	6	6			

V4	6	6	7		
Total					

Null Hypothesis: Here we set up the null hypothesis that the treatments are not differ significantly. **Alternative Hypothesis:** At least one of the treatments differs significantly.

- 1. No. of treatment = k =
- 2. No. of observation, N =
- 3. Grand total, $G = \sum_{1}^{k} \sum_{1}^{n_i} x_{ij} = \dots$
- **4.** Correction Factor, C.F.= $\frac{G^2}{N}$ =....
- 5. Raw of Sum Squares, RSS =.....
- 6. Total Sum of Squares, TSS= RSS C. F. =.....
- 7. Sum of squares due to treatment, SST =.....
- 8. Sum of Squares due to Error, SSE= TSS SST =.....

Table: Analysis of Variance

Source of variation	Degree of freedom	Sum of Square	Mean sum of square	Fcal	F _{tab (.05)}
due to treatment					
Within varieties (Error)					
Total					
since calculated value of F is	than ta	abulated of	F ₀₅ So the null hypothes	sis is	I.

at 5% level of significance.
Standard error of difference between two treatments = $\sqrt{\left(\frac{1}{n_i} + \frac{1}{n_2}\right) * MSSE}$
=
Critical Difference =CD= (S.E.) _{diff} × t _{.05} (error d.f.) =

Objective: To construct the layout of RBD and analyse the data.

Problem: Draw RBD layout for the 4 treatments A, B, C and D with 5 replications.

•					
So	lı.	.+.	^	n	
IJО	H.		u		_

Problem: Four varieties of Onion were compared as regard yields within four blocks in RBD. The data pertaining to yield in kg per plot are given below:

	3	Blo	ock	
Varieties	1	3	4	
A B C D	4 6 4 6	5 8 6 7	3 4 5 6	4 6 5 7

Analyze the data and give conclusion?

Solution: Null hypothesis H₀: There is no significant difference between treatments as well as blocks as regard yield.

Alter	native hypothes	sis H₁: A	t least tv	wo treatments as we	ell as blocks are diffe	ring significantly.
1.	Number of trea	tment = k	ζ=			
2.	Number of repli	ication =	r =			
3.	Total number o	f observa	ation = rk	k =		
4.	Grand Total (G	$) = \sum_{i=1}^{k}$	$\sum_{j=1}^r y_{ij}$	_{ij} =		
5.	Correction factor	$\text{or} = \frac{G^2}{rk} = \frac{1}{r}$				
6.	Raw sum of Sq	uares (R	SS) =			
7.	Total sum of so	quares (T	 ΓSS) = R	RSS – C. F =		
8.	Sum of Square	es due to	treatme	ent (SST) = $\frac{T_1^2 + T_2^2 + \cdots}{r}$	$\frac{+T_k^2}{}$ – C.F =	
9.	Sum of Square	es due to	Block (S	$SSB) = \frac{B_1^2 + B_2^2 + \dots + B_n^2}{1 + B_n^2}$	² - CF =	
	,		·	κ		
10.	Error sum of so	quare (S	SE) = TS	SS - SST - SSB =		
				ANOVA TABI	_E	
	Sources of	D.F	S.S	M.S S	F- cal value	F- table value At 5%
	variation	D.F	S.S	M.S S	F- cal value	F- table value At 5% Level of significance
Trea	variation tments	D.F	S.S	M.S S	F- cal value	
Trea Blocl	variation tments ks (replications)	D.F	S.S	M.S S	F- cal value	
Trea Blocl Error	variation tments ks (replications)	D.F	S.S	M.S S	F- cal value	
Trea Blocl Error Total	variation tments ks (replications)					Level of significance
Trea Block Error Total	variation tments ks (replications) l					
Trea Block Error Total Since level	variation tments ks (replications) c c c c c c c c d c c d c d c significance.	e of F is		than tabulated o	of F _{.05} so null hypothe	Level of significance
Trea Block Error Total Since level	variation tments ks (replications) c c c c c c d c calculated valu of significance. e null hypothesis	e of F is	ed so we	than tabulated o	of F _{.05} so null hypothe	Level of significance
Trea Block Error Total Since level	variation tments ks (replications) c c c c c c d c calculated valu of significance. e null hypothesis	e of F is	ed so we	than tabulated o	of F _{.05} so null hypothe	Level of significance
Trea Block Error Total Since level Since Stand	variation tments ks (replications) ce calculated value of significance. e null hypothesis dard Error of diff	e of F is	ed so we	than tabulated of the calculate Critical dates two treatment means	of F _{.05} so null hypothe	Level of significance
Trea Block Error Total Since level Since Stand	variation tments ks (replications) e calculated valu of significance. e null hypothesis dard Error of diff	e of F is sis rejectorerence before the ference bef	ed so we etween t	two Block means =	of F _{.05} so null hypothermore (C.D) $s = \sqrt{\frac{2 MSSE}{r}} = \dots$	Level of significance
Trea Block Error Total Since level Since Stand	variation tments ks (replications) e calculated valu of significance. e null hypothesis dard Error of diff	e of F is sis rejectorerence before the ference bef	ed so we etween t	two Block means =	of F _{.05} so null hypothed difference (C.D) as = $\sqrt{\frac{2 MSSE}{r}}$ =	Level of significance
Trea Block Error Total Since level Since Stand	variation tments ks (replications) e calculated valu of significance. e null hypothesis dard Error of diff	e of F is sis rejectorerence before the ference bef	ed so we etween t	two Block means =	of F _{.05} so null hypothed difference (C.D) as = $\sqrt{\frac{2 MSSE}{r}}$ =	Level of significance

	Practical No. 17
Objective: To construct layout of Latin Square Desi	gn (LSD) and analyse the data.
Problem: Draw LSD layout for 4 treatments A, B, C and D.	
Solution:	

Problem- A Latin square experiment is conducted to compare five compositions of feeds for producing honey in five bees. The feed composition are A, B, C, D and E. The experimental units are bees and the bees types will be used as columns and the way how to feed the bees (methods) were used as rows:

Method	B1	B2	B3	B4	B5
M1	Α	В	С	D	Е
	6	8	6	6	9
M2	В	С	D	Е	Α
	8	7	6	7	8
М3	С	D	Е	Α	В
	6	7	7	8	10
M4	D	Е	Α	В	С
	6	8	7	9	6
M5	Е	Α	В	С	D

8	7	9	6	6

Test whether the feed have any effect on honey gain or not?

Solut	ion: Null Hypothesis
1.	Number of treatments = Number of rows = number of columns = k =
2.	Grand total = sum of all observations =
3.	Correction factor (C.F) = (Grand total) ² /(Treatment) ² =
4.	Raw sum of squares (R.S.S) =
5.	Total sum of squares (T.S.S) = R.S.S – C.F =
6.	Sum of squares due to treatments (S.S.T) = $\frac{T_1^2}{k} + \frac{T_2^2}{k} + \dots + \frac{T_k^2}{k}$ - C. F =
7.	Sum of squares due to rows (S.S.R) = $\frac{R_1^2}{k} + \frac{R_2^2}{k} + \dots + \frac{R_k^2}{k}$ - C. F =
8.	Sum of squares due to columns (S.S.C) = $\frac{C_1^2}{k} + \frac{C_2^2}{k} + + \frac{C_k^2}{k}$ - C. F =
9.	Sum of squares due to error (S.S.E) =T.S.S – S.S.T – S.S.R – S.S.C =

Table: ANOVA

Source of variation	Degree of freedom	Sum of squares	Mean sum of square	F ratio
Treatment				
Rows				
Column				
Error				
Total				

Since calculated value isthan tabulated value so Nul	I hypothesis is

In this case, we calculate the value of Standard error of difference between two treatment means by

using the following formula:
$S.E = \sqrt{\frac{2 \text{ MSSE}}{k}} = \dots$
Critical Difference: C.D = (S.E) × (t _{0.05} at error d.f) =

Ob	ect:	To	construct	the S	Split	Plot	Design	and	analy	vse	the	data

$\textbf{Problem:} \ Draw layout of Split plot design for the two factors A (allot in main plot) with 4 levels (A_1, A_2, A_3, A_3, A_4, A_4, A_4, A_4, A_4, A_4, A_4, A_4$	1 2,
A ₃ , A ₄) and B (allot in subplot) with 3 levels (B ₁ , B ₂ , B ₃) with 3 replications.	

А3,	A ₄) and B (all	ot in subplot)	with 3 levels	$\left(B_{1},B_{2},B_{3}\right)w$	ith 3 replicati	ons.		
So	Solution:							

Problem: An experiment was laid out in Sprit Plot Design with three farm to study the effect of three sowing dates D₁, D₂ and D₃ with three varieties of wheat A, B and C. The following yields in quintal per acre were found.

varieties	Farm 1			Farm	Farm 2			Farm 3		
	D1	D2	D3	D1	D2	D3	D1	D2	D3	
Α	10.6	10.9	10.1	11.6	10.8	10.1	8.1	8.2	7.9	
В	11.4	11.7	10.8	11.9	11.5	11.1	8.7	9.3	9.1	
С	11.8	12.4	11.3	12.6	12.1	11.8	9.5	9.8	9.5	

Analyse the data and calculate critical difference for different comparisons. State your conclusions.

olution: Null Hypothesis	

Table-1

Factor	Far	m 1			Farr	n 2				Farn	n 3		Grand
A													Total
	Lev	/els		Total	Leve	els		Total		Leve	els	Total	
Factor	Α	В	С		Α	В	С		Α	В	С		
В													
D1													
D2													
D3													
Total													

From table-1, we calculate

$$C.F = \frac{G^2}{rmn}$$

$$(TSS)_1 = \Sigma\Sigma\Sigma(a_ib_jB_k)^2 - C.F \qquad i = 1,2, \, ..., \, m; \, \, j = 1,2, \, ..., \, n; \, \, k = 1,2, \, ..., \, r$$

Table-2

Blocks		Total		
	D1	D2	D3	
Farm1				
Farm2				
Farm3				
Total				

From table-2, we calculate

$$(TSS)_2 = \sum_{i=1}^{m} \sum_{k=1}^{r} \frac{(a_i B_k)^2}{n} - C.F$$

Sum of Squares due to blocks (SSB) = $\sum_{k=1}^{r} \frac{B_k^2}{mn}$ – C.F

Sum of Squares due to factor A (SS(A))= $\sum_{i=1}^{m} \frac{a_i^2}{nr}$ – C.F

Sum of Squares due to Error(a) [SSE(a)] = (TSS)₂ - SSB - SSA

Table-3

Levels of		Levels of fac	ctor A	Total
factor B	D1	D2	D3	
Α				
В				
С				
Total				

From table-3, we calculate

$$(TSS)_3 = \sum_{i=1}^m \sum_{j=1}^n \frac{(a_i b_j)^2}{r} - C.F = \dots$$

Sum of Squares due to factor B (SS(B))= $\sum_{j=1}^{n} \frac{b_j^2}{rm}$ – C.F =.....

Sum of Squares due to AB[SS(AB)] = $(TSS)_3 - SS(B) - SS(A) = \dots$

Sum of Squares due to Error(b) [SSE(b)] = $(TSS)_1 - (TSS)_2 - (TSS)_3 + SS(A) = \dots$

Table: Analysis of Variance

Source of variation	Degrees of freedom	Sum of Square	Mean sum of square	Fcal	F _{tab} (5 %)
Replication (Block)	r-1	SSB			
Factor A (Main Plot)	m-1	SS(A)			
Error (a)	(m-1)(r-1)	SSE(a)			
Factor B (Sub Plot)	n-1	SS(B)			
Interaction	(m-1)(n-1)	SS(AB)			
Error (b)	m(n-1)(r-1)	SSE(b)			
Total	mnr-1				

If calculated valu	ue of F is	than tabulated of	f F _{.05} then null hy	pothesis is	at 5%
level of significar	nce				

Since null hypothesis is rejected then we calculate Critical difference (C.D)
Standard Error of difference between two A means = $\sqrt{\frac{2 MSSE(a)}{rn}}$ =
Standard Error of difference between two B means = $\sqrt{\frac{2 \text{ MSSE}(b)}{rm}}$ =
Standard Error of difference between two B means at the same level of A = $\sqrt{\frac{2 \text{ MSSE}(b)}{r}}$ =
Critical Difference (C.D) = (S.E.) _{diff} \times t _{.05} (error d.f) =
Standard Error of difference between two A means at the same level of B
$= \sqrt{\frac{2 \left[MSSE(a) + (n-1)MSE(b)\right]}{rn}}$
and $t_W = \frac{t(a)MSSE(a) + t(b)(n-1)MSE(b)}{MSSE(a) + (n-1)MSE(b)}$
=
Critical Difference (C.D) = (S.E.) _{diff} \times t _w
=